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Functional magnetic resonance imaging (fMRI) has recently
been adopted as an investigational tool in the field of neuro-
science. The signal changes induced by brain activations are
small (;1–2%) at 1.5T. Therefore, the signal-to-noise ratio
(SNR) of the time series used to calculate the functional maps is
critical. In this study, the minimum SNR required to detect an
expected MR signal change is determined using computer sim-
ulations for typical fMRI experimental designs. These SNR re-
sults are independent of manufacturer, site environment, field
strength, coil type, or type of cognitive task used. Sensitivity
maps depicting the minimum detectable signal change can be
constructed. These sensitivity maps can be used as a mask of the
activation map to help remove false positive activations as well as
identify regions of the brain where it is not possible to confidently
reject the null hypothesis due to a low SNR. Magn Reson Med
44:925–932, 2000. © 2000 Wiley-Liss, Inc.
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The advent of functional magnetic resonance imaging
(fMRI) has produced a surge of activity in neuroscience
research. Significant advancements in fMRI data acquisi-
tion, data processing, and paradigm design have improved
the quality of the functional images. These new advances
have led to a greater understanding of cognitive function.
It is known that a time series of images with a high SNR is
required to detect activation-related signal changes, which
are on the order of 1–5%. However, a thorough investiga-
tion of the minimum SNR required to confidently reject
the null hypothesis has not been explored. In this study,
the development of an SNR model for two different statis-
tical methods is described. The SNR model facilitates the
calculation of the minimum required SNR for a set of
experimental parameters. Furthermore, the minimum SNR
value can be used to form a map depicting the sensitivity
to activation-induced signal changes. The sensitivity map
is applied to clinical fMRI data.

BACKGROUND

Three-dimensional, spatially resolved functional neuroim-
aging was introduced with positron emission tomography
(PET) and the concept of “cognitive subtraction” (1–3). By
imaging the brain in two different states and subtracting

them, one is able to infer function relative to a baseline
task. Many neuroscience investigators have utilized this
subtraction method to study sensorimotor and cognitive
functions in the human brain.

fMRI is a relatively new technique which measures sig-
nal changes due to alterations in local tissue oxygenation.
Activation maps are thereby generated, exploiting hemo-
dynamic variations which are thought to be related to
neuronal activity. This technique is called blood oxygen-
ation level dependent (BOLD) imaging (4,5). The advan-
tages of fMRI over PET are the improved temporal and
spatial resolution, and its noninvasive nature. These ad-
vantages can be exploited in paradigm designs, allowing
more complex and rapid alternations of brain states. Sim-
ilarly, the simple method of subtraction can also be im-
proved by employing statistical tests based on signifi-
cance, such as the t-statistic, cross correlation, or the gen-
eral linear model (6–8). The combination of the improved
paradigm design and statistical techniques allows the in-
vestigator to pose more complex and detailed questions
related to cognitive function.

SNR

The SNR is typically used to compare imaging hardware or
acquisition methods. The concept of generating the SNR is
simple: the mean signal divided by the standard deviation
of the noise. However, it is the choice and treatment of the
noise measurement that is critical to the SNR value. Often
in the literature the type of noise or the region of interest
(ROI) of the noise measurement is not discussed. Further-
more, the origin of the SNR measurement, whether from a
static image or time series data is usually not disclosed.
This lack of information makes it difficult to compare SNR
values across research groups or to replicate studies. It is
important to note that it is the SNR of the time series data
and the stability of the signal which are central to fMRI. A
brief description of the noise components in the MRI im-
age is given below.

The types of noise that can be measured within a brain
image are the background noise outside the brain (region
free of phase-encode ghosts, Sback), the background noise
within the brain (sinus region or signal void within the
brain, Sobj), and the noise in the brain itself (Sbrain). Each
region contains different components of the noise signal.
The Sback noise is related solely to the acquisition/receiver
system, whereas the Sobj noise contains patient motion-
related noise as well as Sback noise. Finally, the Sbrain noise
contains all of the noise in Sobj plus physiologic noise,
partial volume effects, flow artifacts, and MR spin history
errors.

The typical application of SNR is in the comparison of
static images, such as images from two different coils or
pulse sequences. However, in fMRI the goal is to detect
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small fluctuations in the signal over a period of time. Each
one of the noise types described above will have distinct
temporal characteristics that affect the SNR differently. In
this study, the SNR was determined independently for
each voxel over the time course of the data and was not
based on the SNR from a single “static” image. All refer-
ences to SNR within this work pertain to a time series
measurement of SNR.

The t Statistic

Many fMRI experiments utilize the t-test to determine the
significance of signal changes related to brain activation.
In this study, the two-sample t-test was investigated to
understand the dependence of the functional activation
map on the SNR (9). It was assumed that the variance in
each population was equal. In fMRI, DS, the percent signal
change expected from neuronal activation, can be substi-
tuted for the difference in means if the data are mean
corrected and normalized. It was further assumed for this
analysis that the standard deviation of the noise and the
number of images in the active and rest state were identi-
cal. The definition of the t statistic can be simplified to

t 5
DSÎN

2Sp
, [1]

where N is the total number of images acquired in the time
series (N/2 5 Nactive 5 Nrest), excluding any dummy scans
required to drive the MR signal to steady state. Solving Eq.
[1] for the standard deviation of the noise (pooled estimate,
Sp,) and then substituting it into the definition of the SNR
(normalized signal/s) describes the dependence of SNR on
the experimental parameters,

SNR 5
2t

DSÎN
. [2]

From this equation, it can be seen that a higher SNR is
required for small signal changes, experiments with a
small number of images, or a high t-value threshold. In this
derivation the Type I error, a, has been specified by the
t-value chosen, but the power has not been defined. The
power, b, of the statistic determines the ability to properly
reject the null hypothesis (true positive). The SNR value
calculated from Eq. [2] is for an unknown power level and
is not useable for the purposes of this study. Equation [2]
does give the dependence of SNR on the other parameters,
so it is possible to predict how SNR changes given an SNR
value for a known b. To determine the dependence on b,
and to understand the role of SNR in fMRI, a computer
simulation was used to define the minimum SNR required
for specific experimental and statistical parameters. These
include the confidence level (t-value), power level (b),
expected percent signal change (DS), and number of sam-
ples collected during the rest and active state (N).

Correlation Statistic

Another statistic widely used in the field of functional
imaging is cross correlation (9). Typically this statistic is

used for template matching or image comparison in signal
processing applications. In fMRI, a measured time series is
compared to a reference time series, which is a function of
the paradigm and may be convolved with an estimate of
the hemodynamic response. For the purpose of determin-
ing the SNR dependence, it is not possible to derive an
analytic solution since a measured time series is required.
However, it is possible to simulate the measured time
series to determine how the correlation value depends on
the noise and hence the SNR.

A goal of this work was to calculate a minimum SNR
value required by the fMRI experimental parameters and
statistical method used in order to detect an expected MR
signal change associated with neuronal activation. The
assumptions often employed in current fMRI statistical
models, such as sample independence (in which each
voxel is assumed to be independent of its neighbor), were
also true for this study. This becomes more complicated if
one uses spatially and temporally smoothed data. Never-
theless, the utility of the minimum SNR value is that it can
be used prior to the experiment to determine the required
experimental parameters (pixel size, or N) and/or during
the post-processing phase to limit the regions of investiga-
tion to those with a SNR greater than SNRmin to improve
the reliability of the functional maps.

METHODS

Computer simulations were used to determine the mini-
mum SNR for both the t-test and the cross correlation
statistic. Typical functional imaging experimental param-
eters were used to guide the simulations. To demonstrate
the utility of the minimum SNR concept, the simulation
results were applied to a set of clinical fMRI data to gen-
erate a BOLD sensitivity map. In the clinical BOLD sensi-
tivity map, regions were coded white to identify zones in
which BOLD signal changes could be detected. The ana-
tomic data were merged with the BOLD sensitivity map
with a threshold at specific signal changes (1% or 2%) to
demonstrate which regions of the brain could be interro-
gated with confidence. This same data was further ex-
plored to show the sensitivity of the fMRI experiment to
variations in the SNR.

Computer Simulations

A computer simulation was implemented on an HP UNIX
workstation using MATLAB (Mathworks, Sherborn, MA).
The simulation investigated the effects of noise on the
t-test and the cross-correlation statistics. Random trials
were created within the MATLAB programming environ-
ment, with a range of noise values giving rise to SNR
values of 10 to 500. A boxcar design was modeled such
that the baseline condition had a mean of 1 and a standard
deviation determined by the noise value under investiga-
tion. For a given amount of signal change associated with
the activation, an “active” time course was calculated cen-
tered on the new mean (11DS) with the same standard
deviation as the rest data. The SNR was calculated over the
entire time series data. To overcome errors related to ran-
dom number generation, each functional experiment, con-
sisting of N images, was repeated 10000 times (trials) at
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each noise level. A t-score and a correlation value were
calculated for each trial. The threshold values for the t-test
were determined by choosing an alpha of 1% (P , 0.01)
and 5% (P , 0.05) and the appropriate degrees of freedom
based on N. The cutoff for the correlation statistic was set
at r-values of 0.3, 0.4, and 0.5, which are typical for fMRI
studies. Using the Fisher transformation, it is possible to
calculate a Z-score for the corresponding correlation coef-
ficient (10). When the degrees of freedom are sufficiently
large (N . 40), then the t-value and Z-score are asymptot-
ically equivalent. The converted correlation coefficients
are listed in Table 1 for several values of N, allowing for
comparison in terms of t-values.

The number of trials exceeding the significance thresh-
old for each statistic was calculated. The level of detection
of true positives, or power (beta) was set at 99% or 95%.
The minimum SNR was determined to be the point at
which 9900 or 9500 trials were greater than the threshold
value for each statistical condition. Simulations were run
for the different experimental parameters of trial length
(N 5 80 (simple clinical fMRI experiment), 112 (standard
for our research work), and 300), and activation-related
BOLD signal change (0.5%, 1%, 2%, and 5%). A minimum
SNR value was calculated for the t-test (two levels) and for
the cross correlation (three different thresholds).

Functional Imaging Application

Based on the results from the t-test and cross-correlation
simulations, a minimum SNR was determined for a typical
clinical experimental design: 8 blocks of 7 active and
7 baseline images, for a total of 112 images. The subject
was an individual who had a cavernous malformation in
the left parieto-occipatal region, which had bled in the last
3 months. A small amount of residual blood products was
present and caused susceptibility artifacts on the func-
tional images, thus reducing the SNR in the ROI. The
imaging protocol allowed the MR signal to reach steady
state prior to collecting the 112 images. A single shot,
susceptibility-weighted EPI sequence was implemented
on a Siemens Vision 1.5T scanner using the standard cir-
cularly polarized head coil. The imaging parameters used
for functional imaging were TR 5 4.35 sec, TE 5 40 msec,
readout bandwidth 5 133kHz, voxel size 5 3.75 3 3.75 3
4 mm, and matrix size 5 64 3 64. A vacuum pillow was
used to control head motion (11) and the functional data
were motion corrected using SPM96 (7,8,12). The SNR of
the functional time-series data was calculated for the re-

aligned time series and a spatially smoothed (6 mm
FWHM Gaussian) version of the realigned data. An average
signal change map was calculated for both sets of data. An
SNR volume was created for each time series. The BOLD
sensitivity map was created by thresholding the SNR vol-
ume at a level determined by SNRmin for a specific ex-
pected signal change. This data could be further processed
such that several sensitivity maps could be displayed on a
single anatomic image and different colors used to label
ranges of BOLD signal change. Since the sensitivity maps

Table 1
t-Score Required to Detect a 2% BOLD Signal Change

N 5 80 N 5 112 N 5 300

t with a 5 5% 1.99 1.98 1.97
t with a 5 1% 2.64 2.63 2.60
r 5 0.3 2.71 3.23 5.33
r 5 0.4 3.72 4.42 7.30
r 5 0.5 4.82 5.73 9.47

Minimum t-score required to detect a 2% signal change for the
number of images indicated. The lower half of the table shows the
converted correlation coefficients in t-score values. For example, if
N 5 80 and r 5 0.3, the equivalent t-score is 2.71.

Table 2
Minimum SNR Required for a 1% Signal Change

N 5 80 N 5 112 N 5 300

t with a 5 5% 82 69 39
t with a 5 1% 96 83 46
r 5 0.3 100 95 82
r 5 0.4 126 120 106
r 5 0.5 154 148 135

The values in the table represent the minimum SNR value needed to
detect a 1% BOLD signal change with a detection rate (beta) of
95%. Note the decrease in the required SNR as the number of
images in the time series is increased. This is particularly true for the
t-test.

FIG. 1. The plot in a demonstrates the required minimum SNR value
for an expected 2% signal change and N 5 112 images. For the
t-test with a 5% alpha and beta value of 95%, the minimum SNR is
34. As the required confidence increases, so does the minimum
SNR value. Note that in general the SNR requirements for typical
correlation values are higher than those of typical t-test parameters.
b demonstrates the effect of an expected BOLD signal change on a
specific statistical test, t-test with an alpha of 5% and N 5 112. Note
that the large signal changes (5%, small gray dashed line) are easier
to detect because the required SNR is so low (SNR 5 14). However,
if smaller changes (,1%) are expected, the required SNR is much
larger (SNR .70).
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are based on the SNRmin value, larger than expected BOLD
signal changes can also be detected. For example, a 3%
signal change is detectable in the region labeled as 1%
BOLD signal change. These BOLD sensitivity maps were
then merged with the anatomical image to demonstrate the
regions of the brain that were appropriate for statistical
investigation. The BOLD sensitivity maps could also be
merged with the original EPI data to demonstrate the effect
of signal drop-out.

RESULTS

Computer Simulation Results

The results from the computer simulation are shown in
Fig. 1. The percent detection (percentage of trials greater
than the threshold value) is plotted vs. the SNR for both
the t-test and cross correlation for the same experimental
design (2% BOLD signal change and N 5 112), Fig. 1a. The
rapid drop-off in the number of detected trials is evident as
the SNR decreases. Given the statistical parameters of a
95% detection rate and a t-test with an alpha of 5%, the
minimum SNR for a 2% BOLD signal change is 34. For the
cross-correlation statistic, the minimum SNR required at
the same detection rate varies from 47 (r 5 0.3) to 74 (r 5
0.5). The SNRmin for the other experimental designs (N 5
80, 112, or 300) are summarized in Table 2 for a BOLD
signal change of 1%. Because the SNRmin varies linearly
with signal change (Eq. [2]), it is easy to convert these data
to the SNRmin for any expected signal change.

As shown in Fig. 1b, the effect of the BOLD signal
change on the minimum SNR was investigated. The per-
cent detection is plotted vs. SNR for a family of percent
signal changes expected with constant experimental and
statistical parameters of N 5 112 and a t-test with an alpha
of 5%. From this plot, it can be seen that the minimum
SNR varies from a very high SNR (SNRmin 5 138) for a
0.5% signal change to an SNRmin of 14 for a 5% change.
The SNRmin varies with an inverse linear relationship to
the expected BOLD signal change when all other parame-
ters are held constant, as predicted by Eq. [2]. Below the
SNRmin level, it is not possible to achieve the confidence
level (beta) for detecting activation for the given imaging
parameters.

Clinical fMRI Example

The results of a language functional imaging task per-
formed on a patient with a cavernous malformation were
used to demonstrate the impact of SNR. Figures 2 and 3
demonstrate the effect of smoothing and statistical power
for different levels of the expected BOLD signal change
with all other parameters held constant. In Fig. 2, the
threshold for the BOLD sensitivity map was set at 2%,
which depicts regions in which the SNR is sufficient to
detect a 2% or greater BOLD signal change as white on the
merged image. The first column of data is from non-
smoothed, motion-corrected data; the second is from the
smoothed time-series data. The top row of data is con-
strained to have a 95% power level, and the bottom reflects

FIG. 2. This figure illustrates the importance of
SNR and the impact of smoothing on the detec-
tion of BOLD signal changes. The white regions
within the brain depict where it is possible to
detect a 2% or greater signal change given: 5%
alpha, N 5 112 using a t-test. The level of confi-
dence (power) is noted on the left side of the
figure (95% or 99%). The left column is based on
motion-corrected data; the right column is gen-
erated from spatially smoothed (6 mm), motion-
corrected data. The region adjacent to the lesion
cannot be investigated for signals smaller than
2% in the motion-corrected data. However, the
smoothing dramatically improves the regions of
the brain that can be tested for a 2% or greater
signal change. The sinus benefits from the
smoothing as well.
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a 99% power level. The lesion produces a void in the
BOLD sensitivity map, which is easily seen in Fig. 2a and
c. By increasing the confidence level, the regions that can
be investigated shrink. Figure 2b and d demonstrates the
utility of spatially smoothing the data. The smoothed data
maintains uniform coverage of the entire brain even at a
99% power level.

Figure 3 is structured in the same fashion as Fig. 2 but
uses a 1% BOLD signal change as the threshold. In this
experiment, it is not possible to detect a 1% signal change
with a 99% power level in the motion-corrected data (Fig.
3c). Even for the 95% power level it is only possible to
detect a 1% BOLD signal change in very limited regions.
Conversely, in the smoothed time-series data it is possible
to detect these changes in nearly all of the brain. Only
regions directly surrounding the lesion and the sinuses are
excluded.

To further demonstrate the importance of the SNR on
fMRI, Fig. 4 depicts the signal change, BOLD sensitivity,
and the functional map from the same clinical case. In Fig.
4a, the percent signal change while the subject performed
a semantic decision task of synonym detection (13) is
shown in shades of blue. The light blue color represents a
0.5% signal change; the darker the blue, the more intense
the signal change. The BOLD sensitivity map for this slice
is shown in Fig. 4b with shades of red. The light red
regions represent areas in which it is possible to detect a
0.5% or larger BOLD signal change. The darker red regions
require a larger BOLD signal change in order to be de-
tected. The activation map shown in Fig. 4c was derived

from SPM96 using an uncorrected threshold of P ,
0.001 (Z . 3.09). Note that the percent signal changes (Fig.
4a, white arrow) are equal to or greater than those needed
(Fig. 4b) in the region of the activation (Fig. 4c). This is not
true for the region involving the lesion (Fig. 4, green ar-
row). The detected signal change does not meet the re-
quired level of BOLD signal change. It is quite possible that
these regions were neuronally active but the SNR was
lower than what was required to detect it.

DISCUSSION

Functional imaging demands high SNR images to reliably
measure brain activation. In many fMRI studies, a signifi-
cant amount of activation is displayed at the edges of the
brain. These voxels may be incorrectly identified as active
due to motion correlated signal changes. Spurious activa-
tions are also present in areas near susceptibility artifacts
such as the sinus and temporal bone regions. These types
of erroneous activations could be avoided by preprocess-
ing (masking) the functional activation maps based on the
BOLD sensitivity map for the type of statistic and experi-
mental parameters used. The sensitivity map can also be
used to evaluate whether specific regions of the brain meet
the SNR requirements. This is useful for the development
of paradigms and experiments, especially for fMRI projects
investigating regions in the temporal lobes, orbito-frontal
regions, and the cerebellum, since these brain regions are
the most sensitive to signal loss in the EPI images.

FIG. 3. This is similar to Fig. 2 except that the
white regions demonstrate where it is possible to
detect a 1% or greater BOLD signal change. No
voxels survive the 99% confidence threshold for
the motion-corrected data (c). There is a small
number of voxels available for the 95% confidence
level, and none in the region of the lesion. In con-
trast, the smoothed data (right column) includes
most of the brain. Again, the regions of the sinus
and lesion are not appropriate for investigation.
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An example of the utility of calculating an SNR map is
the evaluation of the effectiveness of motion correction. A
comparison of the time-series data was made before and
after applying a rigid body motion correction scheme with-
out corrections for spin history (7,8,12,14). The bulk of the

brain, including the deep structures, had a small increase
in SNR of 0–7%. However, the regions of the brain at the
periphery, adjacent to the sinuses and ventricles, and
other regions sensitive to motion had large increases in
SNR of 20–120%. The increase in SNR was accomplished

FIG. 4. a: The average percent signal change, with the
lightest blue representing the smallest signal change
(0.5%). There are regions within the lesion which have
significant signal changes (green arrow). b: The BOLD
sensitivity map, with the lightest red representing the
smallest BOLD change (0.5%). c: The functional activa-
tion map, with yellow representing voxels that met or
exceeded the Z-score threshold of significance. Only the
region that had signal changes which could be detected
according to the sensitivity map appear on the activation
map (open arrow). The region depicted by the green
arrow did not meet the required high level of BOLD signal
change because of the lower SNR in the region.
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by reducing the noise due to motion. The interpolation
algorithm used to create the new, realigned images may
introduce some smoothing by including information from
surrounding voxels, which would further reduce the
noise. However, since the motion from image to image is
typically subvoxel (, .1 mm), this smoothing is not ex-
pected to be detrimental. The increase in SNR is substan-
tial in regions of the brain that are sensitive to motion, and
improves the sensitivity to BOLD signal changes.

An important role of the BOLD sensitivity map is quality
control in clinical applications of fMRI as well as in neu-
roscience experiments. The act of overlaying the func-
tional map on the anatomic data conceals the areas of
signal loss. Identifying those regions with an SNR below
the acceptable minimum value enables the investigator to
visualize the impact of low SNR on the activation map.
Specifically, if the regions not included in the BOLD sen-
sitivity map were hypothesized to be active no conclusion
could be made, due to insufficient SNR. This is important
for clinical studies in which the physician is relying on the
information to make a clinical decision. If the ROI in the
brain is not included in the BOLD sensitivity map, no
information can be gained from the imaging study and it
should be repeated with the SNR improved in some way.

In fMRI data analysis, smoothing of the data both spa-
tially and temporally has been used to improve the SNR at
the expense of localization of the activation (7,8,15). The
effect of spatial smoothing on BOLD sensitivity is evident
in Figs. 2 and 3. The smoothing tends to spread out the
activation and decrease its overall amplitude (smaller
BOLD signal change) but substantially decreases the noise,
thus making it easier to detect the activation-induced sig-
nal changes. The method described in this work allows
one to visually investigate the effect of smoothing on the
ability to detect BOLD signal changes. Once the images
have undergone smoothing (6 mm FWHM Gaussian), the
specific anatomical details are harder to identify based on
the SNR. Nevertheless, the SNR values are significantly
increased in Fig. 2b and d and Fig. 3b and d. This is seen
by the increase in the regions colored white, which indi-
cates where it is appropriate to investigate the experimen-
tal hypothesis. The regions that benefit the most from
smoothing include the sinus region and the area surround-
ing the lesion. The tradeoff for an increase in SNR is the
lack of specificity of the location of the activation.

The method used in this study is equivalent to evaluat-
ing the statistic (t-test or correlation) at a single point
(alpha or beta) on the receiver operating characteristic
(ROC) curve under conditions with varying SNR. Typi-
cally, the ROC curve is used to identify which test has the
best overall performance. It is not the goal of this work to
find the optimal operating point (alpha or beta) for fMRI,
but to find the optimal SNR value given the constant
constraint of the allowed true (beta) and false (alpha) pos-
itive rates. The values for the false positive rate are typi-
cally described with the statistic used. The detection rates
are not usually mentioned, but they are assumed to be
high. For presurgical clinical use, fMRI demands a detec-
tion rate of .99%, which implies that the SNR of the
time-series data needs to be quite high.

A drawback to this method is the use of two simple
statistics. There are many data analysis methods used in

fMRI and all of these need to be explored in a similar
manner in order to characterize the sensitivity to SNR.
More complex models of the signal response will account
for components of the noise, thus reducing the required
SNR to detect the specific signal change. Voxel clustering
is a good example. If an activated voxel has a neighbor that
has a subthreshold statistical value, the voxel clustering-
based algorithm would reward the neighbor voxel by low-
ering the required threshold or increasing its statistical
value. The result is that the voxel is labeled active despite
the lower level of BOLD signal change or SNR. The BOLD
sensitivity maps derived in this study do not account for
this type of modeling, but it could be modified to incor-
porate any model.

It is important to note that the values calculated in the
computer model are independent of field strength, coil
type, MR manufacturer, or other physical parameters. The
computer model calculates the required minimum SNR to
detect a given BOLD signal change. At higher field
strengths there is more signal and the BOLD signal change
may be larger for a particular paradigm, but the SNR still
needs to be greater than the calculated minimum in order
to detect it. The temporal stability of the MR signal is very
important for the detection of small signal changes.

CONCLUSIONS

In this study, a method for calculating the minimum SNR
for a given level of statistical confidence was developed.
The concept of a BOLD sensitivity map was introduced
which depicts regions in which a minimum signal change
is required in order to be detected for a specific set of
experimental parameters. In the clinical study, a region
was identified that had a signal change on the order of the
BOLD response; however, the SNR was not high enough to
detect it. This region was adjacent to the lesion, thus
demonstrating the clinical importance of SNR when con-
ducting an fMRI experiment. In this example, the region
around the lesion had sufficient SNR to detect signal
changes greater than 1%. However, BOLD signal changes
of 1% or smaller could not be detected near the lesion.
Ideally, the protocol could be changed to increase the SNR
in the region around the lesion to ensure that the lack of
neuronal activation is real. This is especially important for
presurgical planning applications.

The method introduced in this work allows the quanti-
tative and qualitative comparison of fMRI imaging meth-
ods based on the SNR of the time-series data. It can also be
used prior to the experiment to determine if the protocol
will allow the detection of the expected BOLD signal
changes. Using the minimum SNR value calculated from
the computer model, a BOLD sensitivity map can be gen-
erated for use in conjunction with the functional maps.
The application of this sensitivity map will improve the
quality of the activation maps as well as increase confi-
dence in the conclusions made about them.
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